Background

Different management regimes have direct effect on forest processes, on environmental changes and climate mitigation. Coppice forests are widely distributed in EU, where they cover approximately 23 millions ha. Coppice forests provide a number of goods, from energy (fuelwood) to non-wood production (mushrooms, honey, cork, fruits) and a number of ecosystem services (recreation, water, biodiversity). Coppice forests are included in the level II network, BUT coppice is a management option barely considered in SFM.

What

Test consolidated and newly established SFM indicators for coppice forests. Demonstrate, by post-hoc and real data, how different management approaches have actually favored/limited the sustainability and efficiency of coppice forests. Improve Sustainable Forest Management (SFM) of coppice forests.

How & Where

Network of long-term experimental trials (data series from 10 to 45 years)

- **2 regions**: Toscana and Sardegna
- **3 European Forest Type**
 - Mountainous beech forests - 7.3
 - Thermophilic deciduous forests - 8.2
 - Evergreen broadleaved forests - 9.1

SFM Indicators

- **3 different management options**
 - Natural evolution
 - Traditional coppice
 - Conversion to high forest

Preliminary results

SFM C1 innovative indicator

As for the age-span tested (21-71yrs), the highest value was registered for beech, conversion option. The reduced difference between conversion and natural evolution means the positive growth pattern for the 3 species.

SFM C2 traditional indicator

The absolute highest defo. value was registered for beech, traditional coppice option. For Turkey and holm oak, the management option doesn’t have an effect on tree health status. Bars represent S.E.

SFM C2 innovative indicator

Leaf thickness (LT) seems to be species-specific. Whinin the same species, lower values were for conversion. Coupled with higher defoliation, a reduced LT could suggest a general condition of less resistance to stress factors. Bars represent S.E.